Wearables – A Data Scientist’s Dream Come True


Everyone knows that data scientists love data and the more of it, the greater the love. As a result, the surging interest in wearables is just what the doctor ordered because these electronic devices collect enormous treasure troves of data. In turn, it is the job of data scientists to make sense of it all, unlock secrets, and assign economic value. As a data scientist, it is a dream come true!

Why Do Hadoop Projects Fail?

I found an interesting discussion going on in the Global Big Data & Analytics group on LinkedIn – “Why do Hadoop projects fail?” Having just returned from the Hadoop Summit 2014 in San Jose, I witnessed plenty of use case examples Hadoop implementations that were wildly successful. I was therefore intrigued by the notion to itemize causes for failed projects.

An Individual’s Right to be Forgotten


Big data is all about finding ways to manage the increasing volume of information being kept on consumers presumably to help with making purchase decisions and fine-tuning the customer experience. Through data science and machine learning, technology-driven businesses have the ability to know more about their customers and potential customers than ever before. Service providers […]

Data Science @ Activision


This past week I was hot on the Meetup circuit here in Silicon Beach and I decided to take in a presentation “Data Science @ Activision”. Activision is the publisher of the famously popular video game “Call of Duty.” The company has multiple analytic teams. The talk provided a detailed overview of data science at Activision and provided some additional detail on two of their analytic groups: the Game Analytics Team and the Marketing & Advanced Analytics Team.

2014 Data Scientist Salary Survey


An important new research study was recently released that well-serves the needs of the data science professional community – the Burtch Works Study: Data Science Professionals Report. The free report includes a complete overview of the data science profession.

Data Science vs. Statistics – One in the Same?

I recently ran across a thought-provoking post on the USC Anneberg Innovation Lab blog – “Why Do We Need Data Science when We’ve Had Statistics for Centuries.” With all the debate of late surrounding the relatively new “data science” term, I’ve been thinking a lot about this question, so I thought I’d analyze this notion […]

Switching to a Career in Programming

In this special guest feature, Jesse Anderson from Cloudera writes about how you can succeed with a career move into programming. At a time when data science engineers are using experience in programming to carve out their place in Big Data, this could be your big opportunity.

Machine Learning with Apache Mahout


This week I attended an event sponsored by my favorite Meetup group: LA Machine Learning. The topic was “Machine learning with Apache Mahout” presented by Ted Dunning, Chief Application Architect for MapR Technologies. The event was booked to capacity with 100 in attendance.

Beware “Big Schema”


Most everyone has heard of “big data” – the popular term for data so massive it’s difficult to manage. Today, the volume of search engine queries, online retail sales and Twitter messages regularly exceeds the capabilities of traditional databases. There’s a complement to big data that we call “big schema”. Modern data can not only have vast quantities and fast rates, but can also have diverse structure. Big schema can arise with enterprise data models, large data warehouses and scientific data.

Stephen Hawking: Machine Learning is Scary


An eye-catching piece appearing in today’s edition of The Independent featured the thoughts of luminaries from the scientific world – renowned physicist Stephen Hawking, U.C. Berkeley computer-science professor Stuart Russell, and MIT physics professors Max Tegmark and Frank Wilczek – about the potential perils of artificial intelligence.